中国科学网手机版

首页 > 科技 > 资讯 > 文章详情页

澎思科技行人再识别技术刷新世界记录

近日,国内人工智能企业澎思科技(Pensees)在行人再识别(Person Re-identification,简称ReID)算法上取得突破,在三大主流ReID数据集测试(Market1501,DukeMTMC-reID,CUHK03)中,算法关键指标首位命中率(Rank-1 Accuracy)获得业内最好成绩,刷新了世界纪录。

在行人再识别(ReID)技术研究领域,首位命中率(Rank-1 Accuracy)和平均精度均值(Mean Average Precision,mAP)是衡量算法水平的核心指标。此次,澎思科技一举实现了在三大数据集上Rank-1关键指标的大幅提升,在Market 1501的Rank-1指标上已经达到96.73%,领先了人们熟知的大华、云从科技等头部厂家。

同时,在Duke MTMC-reID、CUHK03两个数据集上,澎思科技也刷新了之前业内最高纪录,Rank-1指标分别达到了92.01%和84.57%,尤其在最具挑战的CUHK03上提升明显,在Rank-1和mAP上均达到业界最好水准。

据介绍,行人再识别(ReID)技术起源于多摄像头跟踪,用于判断非重叠视域中拍摄到的不同图像中的行人是否属于同一个人。作为人脸识别技术的重要补充,其发展内核便是在不同视频中,在无法获取清晰人脸特征信息前提下,机器通过穿着、发型、体态等信息将同一个人识别出来,增强数据的时空连接性。

而此次澎思科技在算法上的突破主要得益于以下几个方面:

首先,采用human parsing对人体分割,结合金字塔水平分块策略,使得网络准确提取细粒度区域特征的能力大幅提升;

训练阶段,借鉴curriculum learning思路,难样本比例逐步提升,使得损失函数更易收敛;

通过图网络结构,学习得到各个细粒度特征的加权系数,进一步提高特征的分辨能力;

最后,在测试阶段,除常规距离计算手段,引入重构距离,提升网络对未对齐、遮挡等技术难点的健壮性。

行人再识别(ReID)技术涉及计算机视觉、机器学习、模式识别等多个学科领域,可以广泛应用于智能视频监控、安保、刑侦等领域。在公共安全以外,行人再识别(ReID)技术还可以应用于智慧城市、智能交通、智慧零售、智能制造、智慧园区等领域,有很高的应用价值。


【版权声明】凡本站未注明来源为"中国科学网"的所有作品,均转载、编译或摘编自其它媒体,转载、编译或摘编的目的在于传递更多信息,并不代表本站及其子站赞同其观点和对其真实性负责。其他媒体、网站或个人转载使用时必须保留本站注明的文章来源,并自负法律责任。 中国科学网对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。

 
 
 

分类导航

关于我们 | 网站地图 | 网站留言 | 广告服务 | 联系我们 biz@minimouse.com.cn

版权所有 中国科学网www.minimouse.com.cn